A fourth-order Bessel fitting method for the numerical solution of the Schrödinger equation
نویسندگان
چکیده
منابع مشابه
Explicit sixth-order Bessel and Neumann fitted method for the numerical solution of the Schrödinger equation
An explicit sixth-algebraic-order method for the numerical solution of the Schrödinger equation for a neutral particle is developed. The new formula considered contains free parameters that are defined in order to integrate the spherical Bessel and Neumann functions exactly. Based on the new method and a method of Simos we obtained a variable-step algorithm. The results produced, based on the n...
متن کاملNumerical solution for one-dimensional independent of time Schrödinger Equation
In this paper, one of the numerical solution method of one- particle, one dimensional timeindependentSchrodinger equation are presented that allows one to obtain accurate bound state eigenvalues and functions for an arbitrary potential energy function V(x).For each case, we draw eigen functions versus the related reduced variable for the correspondingenergies. The paper ended with a comparison ...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولA Dissipative Exponentially-Fitted Method for the Numerical Solution of the Schrödinger Equation
A dissipative exponentially fitted method is constructed in this paper for the numerical integration of the Schrödinger equation. We note that the present method is a nonsymmetric multistep method (dissipative method) An application to the bound-states problem and the resonance problem of the radial Schrödinger equation indicates that the new method is more efficient (i.e. more accurate and mor...
متن کاملnumerical solution for one-dimensional independent of time schrödinger equation
in this paper, one of the numerical solution method of one- particle, one dimensional timeindependentschrodinger equation are presented that allows one to obtain accurate bound state eigenvalues and functions for an arbitrary potential energy function v(x).for each case, we draw eigen functions versus the related reduced variable for the correspondingenergies. the paper ended with a comparison ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1992
ISSN: 0377-0427
DOI: 10.1016/0377-0427(92)90017-r